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NATURAL CONVECTIVE HEAT EXCHANGE BETWEEN ISOTHERMAL CONCENTRIC SPHERES 

S. V. Solov'ev and A. S. Lyalikov UDC 536.25 

The problem of natural convection in spherically concentric layers is considered. 
The heat-exchange similarity equation obtained agrees satisfactorily with the 
experimental data of [5]. 

At the present time there is great interest in analytical and numerical methods of solv- 
ing natural convective problems in finite volumes. The majority of studies consider planar 
problems, with a minority devoted to cylindrical layers, while [1-3] consider spherical 
layers. A bibliography of the first two types of problem is presented in [4]. In [i] the 
authors consider natural convection of a viscous compressible gas (air, P = 0.714) for outer/ 
inner diameter ratios in the range l.l-~<d2/d~ ~6 and Grashof numbers from i0 ~ to 106 . Law- 
rence et al. [2] considered natural convection of incompressible air at low Rayleigh numbers. 
The authors attempted to fill a gap in theory for this region, but comparison of their results 
with the experiments of Bishop et al. [5] indicates a lack of success. In [3] (where in con- 
trast to [i, 2] the exterior sphere was the hotter), natural convection of a compressible 
gag (air, P = 0.71) was considered. The heat-exchange similarity equation obtained in [3] 
was compared with the results of [5] and good agreement was found. 

In the experimental study [5] a generalized heat-exchange equation was obtained for cal- 
culation of average heat liberation in spherical isothermal concentric layers for a wide 
range of Rayleigh numbers (determined by width of the layer) and Prandtl numbers (P = 4.7- 
4148; Ra = 1.3 �9 i03-5.8-i0 e, D/d = 1.09-2.81). 

But, it is often of importance to know such local characteristics as the velocity field, 
the temperature in the layer, the character of liquid motion, and local thermal fluxes (which 
are often quite complex), which at present cannot be experimentally determined. These dif- 
ficulties may be avoided by numerical solution of the problem. Moreover, [1-3] considered only 
air, reducing the range of application of the analytical and numerical results obtained for 
calculation of natural convective heat exchange in spherical concentric liquid (gas) layers, 
the thermophysical characteristics of which differ from air. Therefore, in order to obtain 
a solution over a broadened range of Prandtl and Rayleigh numbers, an attempt was made to 
numerically solve the problem of natural convection in spherical concentric layers of both 
gases and liquids. Prandtl and Rayleigh numbers were varied over the range P = 0.2-5, Rad = 

TABLE i. Coefficients of Eq. (i) 
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Fig. i. Flow line distribution for spherical layer with 
d/D = 0.5, P = i, G = i04 (left) and P = 1.25; G = l0 s 
(right) (a); tangential velocity component at B = 90 ~ for 
various d/D (P = 3.96, Re d = 3.16 �9 i0 s) (b): I) d/D = 
0.5; 2) 0.59; 3) 0.67; 4) 0.83. 

8-(i03-I07) . Inner/outer diameter ratio of the spheres was varied over the range 0.5 ~d/D 
0.83. 

The stationary problem of motion and heat exchange upon natural convection in spherical 
concentric layers with a heated inner sphere was considered. The problem was described by 
the Navier-Stokes equation and the equations of continuity and energy conservation in the 
Boussinesq approximation with consideration of longitudinal symmetry. Solution reduces to 
solution of three equations: for eddy-current intensity, energy, and the Poisson equation 
for the current function. In dimensionless form these equations may be combined in the form 

The coefficients ~, a~, b~, cr d~ are defined in Table i. 

The boundary conditions which must be satisfied by the solution of Eq. (i) are: 

~ = ~ = 0  at R = I ,  Rz, (2) 
oR 

where 

( ~ b  aT = 0  at ~ = 0 , = ,  (3) 

T = I  at R--- l ,  (4) 

T = 0  at R = R 2 .  (5) 
The boundary conditions for vortex intensity on the wall assume a linear change of 

along the normal. The boundary condition for m on the axis of symmetry is taken from [6]. 
As scales for the radius, flow function, and temperature, we use r~, the thermal diffusiv- 
ity a, and tl -- t2, respectively. 

Equation (I) was solved by the method described in [6]. For the initial values of the 
desired functions the zero values of vortex intensity, flow function, and stationary tempera- 
ture distribution T, for the case of pure thermal conductivity [2] were used: 

Rz--R (6) 
T,= R(~,-- i)" 

Calculations were performed on a grid with 10-20 steps in radius and 30-36 steps in angle. 

Stationary flow line distribution, tangential velocity component, temperature, and local 
Nusselt number were obtained. 
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Fig. 2. Haximum Of flow function ~m 
versus log of Rayleigh number for var- 
ious d/D. For experimental-point no- 
tation see Fig, i. 

Figure lashows flow lines for d/D = 0.5, P = i, G = 104 (left) and P = 1.25, G = l0 s 
(right). With increase in Reynolds number there is an increase in flow function values. In 
these regimes there is a single vortex fl0w, with the center of the vortex (denoted by a dot) 
displaced upward. 

Figure ib shows that the velocity profiles Vgo ~ for various d/D (P = 3.96, Ra d = 3.16 �9 
105 ) are of identical character, with the exception of the profile for d/D = 0.5 in the re- 
gion next to the outer surface, which is explained by the existence of a secondary vortex in 
this region. 

As shown in Fig. 2, the maxirmm of the flow function ~m as a fucntion of logRa d for var- 
ious d/D always increases monotonically with increase in Rayleigh number. (For d/D = 0.67 the 
flow function maximum increases to ~m = 189, which corresponds to a value Ra d = 4 107 , where 
d = 2ri.) 

Figure 3 shows temperature profiles for P = 3.96, Rad = 3.16 l0 s , and various d/D. 
As is apparent from the figure, with decrease in d/D (i.e., upon increase in the width of the 
layer) there occurs a certain readjustment of the temperature field, in the sense that with 
increase in B there is an increase in temperature gradients on the surface of the inner sphere 
with relative lack of change on the surface of the outer sphere, Which agreed qualitatively 

with the velocity profiles of Fig. ib and the experimental temperature profiles of [5]. 

Figure 4a shows local Nusselt numbers on the Surfaces ofinner and outer spheres 

Nui ~ ~tr4_ = OF t ~=l' (7) 

- = - R~ a--RIR=R, ' 
Nuz ~ r z  aT 

with the derivatives of Eqs. (7), (8) approximated by three-point formulas: 

l l 
(4Tl  - -  3To ~ T2)and (T~-2  H- 3T:: - -  4 T N - 0 .  

2AR 2AR 

N u s s e l t  n u m b e r s  w e r e  a v e r g e d  o v e r  t h e  s u r f a c e s  R = t and  R = R= i n  t h e  f o r m  

(8) 

o qz5 o, so qTs R-L 
R z - I  " 

o qze qss qzs .~:le-t 

Fig. 3. Temperature distribution T, in layer at various angles ~. P = 3.96, 
Ra d = 3.16 �9 10s; a) d/D = 0.67; b) 0.59; c) 0.5. 
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Fig. 4. Distr:Lbution of local Nusselt numbers on inner 
(Nut) and outer (Nu2) spheres for various angles 8 (P = 
3.96, Ra d = 3.16 �9 i0 s) (a), and comparison of Eq. (12) 
derived herein with generalized experimental data of Eq. 
(14) (b): i) Eq. (12); 2) Eq. (14). 

0 (9)  

N-ur, ~r2-R2~[ aT ] sin ~k/~. 

0 

Verification with the balance equation 

O ~ 9 

~ A t  4~r~ = %At 4~r~ (10)  

showed that the curves of Fig. 4a satisfy Eq. (i0). 

As is evident from Fig. 4a, the local Nusselt numbers depend weakly on d/D, the same 
conclusion reached by the authors of [3]. 

To obtain a heat-exchan~ similarity equation for free convection in spherical layers, 
the avemaged Nusselt number Nurz was calculated in accordance with Eq. (9) for 22 variants 
of original data. The integral in Eq. (9) was calculated by Simpson's rule. 

Figure 4b shows the dependence of averaged Nusselt numbers on Rayleigh number (referred 
to the diameter of the inner sphere). These data were processed by the least-squares method 
[7], with data approximated by the expression 

N ~  = ao (diD) =  ̀ Ra~', ( i i )  

where a o ,  a t ,  az are unknown coefficients. 

The least-squares method was also used to obtain the expression 

~ d  = 0,450 (diD) ~176 Ra~ '~26, (12) 

w h i c h  i s  e v a l u a t e d  s t a t i s t i c a l l y  i n  T a b l e  2.  

From Eq.  (12) i t  i s  e v i d e n t  u h a t  t h e  a v e r a g e d  N u s s e l t  number  d o e s  in  f a c t  depend  w e a k l y  
on  d/D.  The e q u a t i o n  t h u s  o b t a i n e d ,  Eq. ( 1 2 ) ,  was compared  w i t h  t h e  g e n e r a l i z e d  e x p e r i m e n t a l  

TABLE 2.  S t a t i s t i c a l  ' E v a l u a t i o n  o f  C o e f -  

a 

0,071 

0,120 

0,009 

O2 

0,287 

0,I00 

16,449 

ficients of Eq. (ii) 

Quantity 

a o = 0,450 

al = 0,03! 

% = 0,226 

o 0 ---- 0,038; S = 0,029 
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data of [5]: 

ke~[/k = 0,228 (Ra*) ~ ( 13 ) 

which when transformed to Nusselt number and inner sphere diameter as defining dimension 
takes on the form 

N--U d == (0,572 - -  0,394) Ra~ '226. ( 1 4 )  

The change in the constant within parentheses is related to the range of change of d/D, while 
the constant of Eq. (12) lies within this interval with a relative error of --21% to +14%. 

Thus, the similarity equation obtained, Eq. (12), satisfactorily describes natural con- 
vection in spherical concentric layers with the heat exchange regimes considered, permitting 
evaluation of the probability (reliability) of local values obtained, a knowledge of which is 
necessary for calculation of a given phenomenon. 

NOTATION 

rl, r2, dimensional radii of inner and outer spheres; d, D, dimensional diameters of inner and 
outer spheres; tl andt2, temperatures on inner and outer sphere surfaces; T,, stationary tempera- 
ture distribution in case of pure thermal conductivity; R and R=, dimensionless current radius 
and radius of outer sphere, 4, flow function; m, vortex intensity;B, polar angle; P = ~/a, 
Prandtl number; Ra d = g~(tl -- t~)d~/(va), Rayleigh number; G = gy(t~ -- t2)r~/v =, Grashof num- 
ber; T, dimensionless temperature; ~, coefficient of thermal expansion; Nu~ = ~irx/%__and 
Nu= = u2r2/%, local Nusselt numbers on inner and outer surfaces; Nurx = a--~r~/% and Nur2 = 
~2r2/%, averaged Nusselt numbers on inner and outer sphere s~rfaces; ~: and ~2, local heat 
liberation coefficients on inner and outer surfaces; ~: and a=, averaged heat liberation coef- 
!icients on inner and outer surfaces; %, thermal conductivity coefficient of liquid; Nu d = 
~id/%, averaged Nusselt number on inner sphere surface; kef f and k, effective and molecular 
thermal conductivity coefficients; a, thermal diffusivity coefficient; Re* = gyAT(ro -- rx)~/ 
ogri, modified Rayleigh number; ro, ri, radii of inner and outer spheres; Vgo ~ tangential 
velocity component at B = 90~ o, mean-square error; w, weight function; oo, mean-square er- 
ror per unit weight; S, residual quadratic function. 
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